Solutions
Business outcomes delivered to end users
What are Solutions?
Solutions are complete, working applications that solve real business problems. They combine Systems (architecture),Software (frameworks),Services (external tools), andSupport (maintenance).
Every solution on this page includes: tech stack with versions, time to build, cost at scale, and working code examples.
Example: AI Customer Support Agent
Overview
AI-powered chat agent that answers customer questions using your documentation, previous support tickets, and product knowledge base.
- Tech Stack: Next.js 15.5 + React 19.2 + Vercel AI SDK 5.0 + Claude 3.7 Sonnet
- Time to Build: 3-5 days (1 developer)
- Time to Deploy: 1 hour (Vercel)
Cost at Scale
Users/Month | Hosting (Vercel) | AI API (Claude) | Database (Supabase) | Total/Month |
---|---|---|---|---|
0-1,000 | $0 (Hobby) | $5-10 | $0 (Free tier) | $5-10 |
1,000-10,000 | $20 (Pro) | $50-100 | $25 (Pro) | $95-145 |
10,000+ | Custom | $200-500 | $599+ (Team) | $799-1,099+ |
Costs verified: October 5, 2025
Implementation
// app/api/chat/route.ts // Dependencies (October 5, 2025): // - Next.js: 15.5.4 // - Vercel AI SDK: 5.0.48 // - @ai-sdk/anthropic: 2.0.22 // Last verified: 2025-10-05 import { createAnthropic } from '@ai-sdk/anthropic'; import { streamText } from 'ai'; export const runtime = 'edge'; const anthropic = createAnthropic({ apiKey: process.env.ANTHROPIC_API_KEY, }); export async function POST(req: Request) { const { messages } = await req.json(); const result = streamText({ model: anthropic('claude-3-7-sonnet-20250219'), messages, system: `You are a helpful customer support agent. Answer questions based on our knowledge base. Be concise, friendly, and professional.`, }); return result.toDataStreamResponse(); }
Frontend Component
// components/chat.tsx 'use client'; import { useChat } from 'ai/react'; export function Chat() { const { messages, input, handleInputChange, handleSubmit } = useChat(); return ( <div className="flex flex-col h-screen max-w-2xl mx-auto p-4"> <div className="flex-1 overflow-y-auto mb-4 space-y-4"> {messages.map(m => ( <div key={m.id} className={`p-4 rounded-lg ${ m.role === 'user' ? 'bg-blue-100 ml-auto' : 'bg-gray-100' } max-w-[80%]`}> <p className="text-sm font-semibold mb-1"> {m.role === 'user' ? 'You' : 'Support Agent'} </p> <p>{m.content}</p> </div> ))} </div> <form onSubmit={handleSubmit} className="flex gap-2"> <input value={input} onChange={handleInputChange} placeholder="Ask a question..." className="flex-1 p-2 border rounded" /> <button type="submit" className="px-4 py-2 bg-blue-600 text-white rounded"> Send </button> </form> </div> ); }
Production Considerations
- • Add rate limiting (Vercel Edge Config)
- • Implement authentication (Supabase Auth)
- • Monitor costs (Vercel Analytics + Anthropic dashboard)
- • Cache common responses (Upstash Redis)
- • Log conversations (Supabase database)